Commentary on Baird, J., Andrich, D., Hopfenbeck, T. N. and Stobart, G., 'assessment and learning: fields apart'

  1. Abramsky, S. (2009). Coalgebras, Chu spaces, and representations of physical systems. Journal of Philosophical Logic, 42, 551–574.
  2. Aldrich, J. (2011). Econometrics and psychometrics: Rivers out of biometry. History of Political Economy, 43(Suppl. 1), 35–56.
  3. Alexander, R. (2013, December, 10). How accurate is the PISA test? BBC News online. Retrieved from
  4. Andrich, D. (1978). Relationships between the Thurstone and Rasch approaches to item scaling. Applied Psychological Measurement, 2, 449–460.
  5. Arrow, K., & Debreu, G. (1954). Existence of an equilibrium for a competitive economy. Econometrica, 22, 265–290.
  6. Baird, J., Andrich, D., Hopfenbeck, T. N., & Stobart, G. (2017). Assessment and learning: Fields apart? Assessment in Education: Principles, Policy and Practice, 24, 317–350.
  7. Beinhocker, E. (2007). The origin of wealth: Evolution, complexity, and the radical re-making of economics. London: Random House.
  8. Belohlavek, R., & Krmelova, M. (2014). Factor analysis of ordinal data via decomposition of matrices with grades. Annals of Mathematics and Artificial Intelligence, 72, 23–44. doi:10.1007/s10472-014-9398-6
  9. Blaug, M. (2002). Ugly currents in modern economics. In U. Mäki (Ed.), Fact and fiction in economics: Models, realism and social construction (pp. 35–56). Cambridge: Cambridge University Press.
  10. Cronbach, L., & Meehl, P. E. (1955). Construct validity in psychological tests. Psychological Bulletin, 52, 281–302.
  11. Davey, B. A., & Priestley, H. A. (2002). Introduction to lattices and order. Cambridge: Cambridge University Press.
  12. Denniston, J. T., Melton, A., & Rodabaugh, S. E. (2013). Formal concept analysis and lattice-valued Chu systems. Journal of Fuzzy Sets and Systems, 216, 52–90.
  13. Ellerman, D. (2016). Quantum mechanics over sets: A pedagogical model with non-commutative finite probability theory as its quantum probability calculus. Synthese. doi:10.1007/s11229-016-1175-0
  14. Goertz, G., & Mahoney, J. (2012). Concepts and measurement: Ontology and epistemology. Social Science Information, 51, 205–216.
  15. Halvorson, H. (2016). Scientific theories. In P. Humphreys (Ed.), The Oxford handbook of philosophy of science (pp. 585–608). Oxford: Oxford University Press. doi:10.1093/oxfordhb/9780199368815.013.33
  16. Hampton, J. A. (2011). Concepts and natural language. In R. Belohlavek & G. Klir (Eds.), Concepts and fuzzy logic (pp. 233–258). Cambridge, MA: The MIT Press.
  17. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263–291.
  18. Kane, M. (2008). The benefits and limitations of formality. Measurement: Interdisciplinary Research and Perspectives, 6, 101–108.
  19. Michell, J. (1997). Quantitative science and the definition of measurement in psychology. British Journal of Psychology, 88, 355–383.
  20. Ofqual. (2016). Grade descriptors for GCSEs graded 9 to 1. Retrieved from
  21. Samuelson, P. (1948). Economics: An introductory analysis. New York, NY: McGraw Hill.
  22. Savage, L. J. (1954). Foundations of statistics. New York, NY: Wiley.
  23. Scharaschkin, A. (2016). Applying formal concept analysis in assessment: Can it help mediate between socio-political and technical understandings of the meaning of exam grades? Presentation at the 2016 annual conference of the Association for Educational Assessment –Europe, Limassol, November 2016.
  24. Scott, D., & Suppes, P. (1958). Foundational aspects of theories of measurement. The Journal of Symbolic Logic, 23, 113–128.
  25. Spivak, D. (2014). Category theory for the sciences. Cambridge, MA: MIT Press.
  26. Thissen, D., & Steinberg, L. (2009). Item response theory. In R. Millsap & A. Maydeu-Olivares (Eds.), The SAGE handbook of quantitative methods in psychology (pp. 148–177). London: SAGE Publications Ltd.