# Commentary on Baird, J., Andrich, D., Hopfenbeck, T. N. and Stobart, G., 'assessment and learning: fields apart'

## Primary tabs

- Abramsky, S. (2009). Coalgebras, Chu spaces, and representations of physical systems.
*Journal of Philosophical Logic*,*42*, 551–574. - Aldrich, J. (2011). Econometrics and psychometrics: Rivers out of biometry.
*History of Political Economy*,*43*(Suppl. 1), 35–56. - Alexander, R. (2013, December, 10). How accurate is the PISA test?
*BBC News online*. Retrieved from http://www.bbc.co.uk/news/magazine-25299445 - Andrich, D. (1978). Relationships between the Thurstone and Rasch approaches to item scaling.
*Applied Psychological Measurement*,*2*, 449–460. - Arrow, K., & Debreu, G. (1954). Existence of an equilibrium for a competitive economy.
*Econometrica*,*22*, 265–290. - Baird, J., Andrich, D., Hopfenbeck, T. N., & Stobart, G. (2017). Assessment and learning: Fields apart?
*Assessment in Education: Principles, Policy and Practice*,*24*, 317–350. - Beinhocker, E. (2007).
*The origin of wealth: Evolution, complexity, and the radical re-making of economics*. London: Random House. - Belohlavek, R., & Krmelova, M. (2014). Factor analysis of ordinal data via decomposition of matrices with grades.
*Annals of Mathematics and Artificial Intelligence*,*72*, 23–44. doi:10.1007/s10472-014-9398-6 - Blaug, M. (2002). Ugly currents in modern economics. In U. Mäki (Ed.),
*Fact and fiction in economics: Models, realism and social construction*(pp. 35–56). Cambridge: Cambridge University Press. - Cronbach, L., & Meehl, P. E. (1955). Construct validity in psychological tests.
*Psychological Bulletin*,*52*, 281–302. - Davey, B. A., & Priestley, H. A. (2002).
*Introduction to lattices and order*. Cambridge: Cambridge University Press. - Denniston, J. T., Melton, A., & Rodabaugh, S. E. (2013). Formal concept analysis and lattice-valued Chu systems.
*Journal of Fuzzy Sets and Systems*,*216*, 52–90. - Ellerman, D. (2016). Quantum mechanics over sets: A pedagogical model with non-commutative finite probability theory as its quantum probability calculus.
*Synthese*. doi:10.1007/s11229-016-1175-0 - Goertz, G., & Mahoney, J. (2012). Concepts and measurement: Ontology and epistemology.
*Social Science Information*,*51*, 205–216. - Halvorson, H. (2016). Scientific theories. In P. Humphreys (Ed.),
*The Oxford handbook of philosophy of science*(pp. 585–608). Oxford: Oxford University Press. doi:10.1093/oxfordhb/9780199368815.013.33 - Hampton, J. A. (2011). Concepts and natural language. In R. Belohlavek & G. Klir (Eds.),
*Concepts and fuzzy logic*(pp. 233–258). Cambridge, MA: The MIT Press. - Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk.
*Econometrica*,*47*, 263–291. - Kane, M. (2008). The benefits and limitations of formality.
*Measurement: Interdisciplinary Research and Perspectives*,*6*, 101–108. - Michell, J. (1997). Quantitative science and the definition of measurement in psychology.
*British Journal of Psychology*,*88*, 355–383. - Ofqual. (2016). Grade descriptors for GCSEs graded 9 to 1. Retrieved from https://www.gov.uk/government/publications/grade-descriptors-for-gcses-graded-9-to-1
- Samuelson, P. (1948).
*Economics: An introductory analysis*. New York, NY: McGraw Hill. - Savage, L. J. (1954).
*Foundations of statistics*. New York, NY: Wiley. - Scharaschkin, A. (2016). Applying formal concept analysis in assessment: Can it help mediate between socio-political and technical understandings of the meaning of exam grades? Presentation at the 2016 annual conference of the Association for Educational Assessment –Europe, Limassol, November 2016.
- Scott, D., & Suppes, P. (1958). Foundational aspects of theories of measurement.
*The Journal of Symbolic Logic*,*23*, 113–128. - Spivak, D. (2014).
*Category theory for the sciences*. Cambridge, MA: MIT Press. - Thissen, D., & Steinberg, L. (2009). Item response theory. In R. Millsap & A. Maydeu-Olivares (Eds.),
*The SAGE handbook of quantitative methods in psychology*(pp. 148–177). London: SAGE Publications Ltd.